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Influence of impurities on magnetic coherence length �h in mixed state of type-II superconductors is inves-
tigated in framework of quasiclassical theory. Nonmonotonic magnetic-field dependence of �h�B� is found.
Increasing of the scattering rate results in decreasing of �h making the �h�B� curve flat. Interconnection
between �h and the coherence length in the Meissner state is obtained. Characteristic relaxation time �0 is the
only parameter needed for excellent fitting of the numerically calculated dependences of �h�� ,B ,T�. The
�0�B ,T� dependence is calculated.
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Various characteristic lengths connected with space distri-
bution of the order parameter and field distribution in the
mixed state of type-II superconductors are discussed in Ref.
1. Recently it has been suggested that the magnetic proper-
ties of flux-line lattice �FLL� can be explained using only
one fitting parameter—a field-dependent effective coherence
length �h�B�.2 The dependence ��B� is related to deviations
in M�ln B� from linear behavior prescribed by London
model. An empirical method to extract ��B� from fitting of
the magnetization data is proposed. It has been found from
the comparison with experimental magnetization data in dif-
ferent materials that the perfect fitting can be obtained. Using
this method influence of scattering on the shape of the ��B�
dependence has also been investigated in a series of
Lu�Ni1−xCox�2B2C crystals in which the mean-free path is
progressively reduced when increasing the Co content.3 The
results show flattening of the shape of the ��B� dependence
along with increasing relaxation time. Because this empirical
method is successful, it is important to obtain microscopical
justification for it. Effects of impurity scattering existing in
real samples should be included in the model.

There are different theoretical approaches based on qua-
siclassical equations for describing the influence of impuri-
ties and temperature on magnetic-field dependence of the
coherence length. The field dependence of ��B� has been
obtained analytically,4 but the vector potential and the super-
conducting gap were not calculated self-consistently. The
Helfand-Werthamer linearization technique for calculation of
the vortex core size was applied. This technique is reason-
able in the region of saturation of the pair potential ��r�
characterized by length scale �2 �see Table I of Ref. 1�. How-
ever in this method the field distribution near the vortex cen-
ter cannot be calculated accurately and the role of Kramer-
Pesch effect5 is not clarified. This theory predicts weakening
of the field dependence of the core size ratio ��B� /��Bc2�
with increasing scattering.

Field dependence of the order-parameter coherence length
�� determined as 1 /��= �����r�� /�r�r=0 / ��NN� was calculated
in Ref. 6. Here ��NN� is the maximum value of the order
parameter along the nearest-neighbor direction which is the
direction of taking the derivative. In this theory
���B� /���Bc2� increases with increasing scattering. However,
the cutoff size extracted from magnetization data is not nec-

essarily the same as the core size proportional to the slope of
the order parameter at the vortex axis; approaching the core
from outside to determine the cutoff, one may have a differ-
ent result than when examining the core structure starting
from its center.2

We have derived,7 using self-consistent solution of quasi-
classical Eilenberger equations for clean superconductors, an
effective London model with the effective magnetic coher-
ence length �h�B� as a parameter. In this approach the coher-
ence length is obtained from the Ginzburg-Landau model8,9

extended over the whole temperature range. A similar
method was used for calculation of the Maki parameters
�1�T� and �2�T� using the Eilenberger equations to distin-
guish the temperature dependences of the upper critical field
Hc2 and the initial slope of the magnetization M /H,
respectively.10 Our method describes the magnetic-field dis-
tribution both in the core region of rapidly growing ��r� and
in the saturation area far from the core. Direct connection
between �h�B� and magnetic-field distribution can be ob-
tained from generalized London equation with the relation

h�r� =
�0

S
�
G

F�G�eiGr

1 + �2G2 , �1�

where F�G�=uK1�u�, K1�u� is the modified Bessel function,
u=�2�hG, G is a reciprocal-lattice vector, and S is the area
of the vortex lattice unit cell. This equation is valid in an
intermediate magnetic-field range below the upper critical
field. The aim of our paper is to calculate field corrections to
usual London equation taking into account the impurities.
The parameter �h is responsible for the core effects in the
mixed state and is different from the electromagnetic coher-
ence length �el in the Meissner state.11 Experimentally, the
F�G� cutoff function can be investigated by small-angle
neutron-scattering �SANS� measurements of FLL reflectivity
and calculated from the integrated intensity of the Bragg
peaks as the sample is rotated through the diffraction condi-
tion. Recently, the FLL form factor in CeCoIn5 was found to
be independent of the applied magnetic field, in striking con-
trast to the exponential decrease usually observed in
superconductors.12 This result is consistent with a strongly
field-dependent coherence length, proportional to the vortex
separation. It was proposed that the field-dependent coher-
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ence length is prominently observed in CeCoIn5 due to the
combination of large � and the very high cleanliness of the
sample.12 Our previous calculation of field distribution in
superclean superconductors also showed strong decrease in
�h�B� in increasing moderate fields, followed by a minimum
and growing again in higher fields.7 It has been found that
the symmetry of the paring state �s or d wave� is not crucial
for the presence of the minimum in �h�B� dependence. The
high-field regime in our model can be explained by the
Abricosov solution of the Ginzburg-Landau theory which is
not connected with any microscopical details of the model.
This result can also be obtained from phenomenological
consideration.8 SANS measurements12 were limited to mod-
erate magnetic fields and did not reach the high-field limit
which complicates comparison between these experiments
and our theoretical approach. In the present paper we check
the sensitivity of the �h�B� dependence to impurity scattering
and find the range of relaxation times � where the minimum
in �h�B� exists.

We consider the mixed state of type-II superconductors at
different levels of impurity scattering, looking for change in
the shape of the �h�B� dependences for comparison with
clean superconductors.7 The magnetic-field penetration depth
��T� is assumed to be field independent and have the same
value as in the Meissner state. However, ��T� is renormal-
ized by impurity scattering11,13 so that

�2

�L0
2 = �2�T�

n�0

1

�̃n�1 + un
2�3/2	−1

, �2�

where

�̃n = � +
1

��un
2 + 1

, �3�

�L0 is the London penetration depth at T=0 K, un=wn /�,
the scattering time � is given in units of 1 / �2Tc�, and
	n= �2n+1��T.

We solve the quasiclassical self-consistent Eilenberger
equations for the s-wave pairing symmetry. In what follows,
the energy, the temperature, and the length are measured in
units of Tc and the coherence length �0=�BCS�� /Tc=vF /Tc.
Hence �BCS=vF /��, where vF is the Fermi velocity and � is
temperature dependent uniform gap. The magnetic field h is
given in units of �0 /2��0

2. In computations the ratio
�=�L0 /�0=10 is used. With the Riccati transformation of the
Eilenberger equations14,15 quasiclassical Green’s functions f
and g can be parametrized via functions a and b,

f̄ =
2a

1 + ab
, f† =

2b

1 + ab
, g =

1 − ab

1 + ab
, �4�

satisfying the nonlinear Riccati equations,

u · �a = − a�2�	n + G� + iu · A� + �� + F� − a2��� + F�� ,

�5�

u · �b = b�2�	n + G� + iu · A� − ��� + F�� + b2�� + F� ,

�6�

where the impurity potentials are determined as F= 
f� /� and
G= 
g� /�. One can expect the nonmonotonic magnetic-field
dependencies of �h obtained for clean superconductors7 to
remain in the limit of moderate scattering. Then the pertur-
bation theory is valid and the Born approximation can be
used for treating the impurity effects. This approach is con-
sidered in Eqs. �5� and �6�. In the calculations we assume
cylindrical Fermi surface and define u as unit vector of the
Fermi velocity. The averages over isotropic Fermi surface
can be reduced to averages over the polar angle 
,

¯�= �1 /2���¯d
.

To take into account the influence of screening the vector
potential A�r� in Eqs. �5� and �6� is obtained from the equa-
tion

� � � � A =
4

�2J , �7�

where the supercurrent J�r� is given in terms of g�	n ,� ,r�
by

J�r� = 2�T �
	n0


0

2� d�

2�

k̂

i
g�	n,�,r� . �8�

Here A and J are measured in units of �0 /2��0 and
2evFN0Tc, respectively, and �=��T=0� /�0. The spatial
variation of the internal field h�r� is determined through

� � A = h�r� , �9�

where h is measured in units of �0 /2��0
2.

The self-consistent condition for the pairing potential
��r� is given by

��r� = VN02�T �
	n0


0

2� d�

2�
f�	n,�,r� , �10�

where V is the pairing interaction energy. The product VN0
can be obtained from the expression

2

VN0
= ln

T

Tc
+ 2�T �

0�	n�	c

1

�	n�
. �11�

To obtain quasiclassical Green’s function, the Riccati
equations �Eqs. �5� and �6�� are solved by the fast Fourier
transform �FFT� method. Unlike the square vortex lattice
studied in Ref. 14, we consider a triangular vortex lattice, for
which the wave vector mesh is transformed from square to
hexagonal shape.16

Iterations of the coefficients a in the Fourier space are
made using the relation

a�Q� =
�� + F − ��� + F��a2 − iuA�FT

iuQ + 2�	n + G�
, �12�

which makes it possible to solve the Riccati equations simul-
taneously for a full set of reciprocal vectors Q in the mesh,
increasing greatly the calculation speed. The shifts to next
iteration have to be damped14 by a value depending on the

LAIHO, SAFONCHIK, AND TRAITO PHYSICAL REVIEW B 78, 064521 �2008�

064521-2



Matsubara frequency 	n and the wave vector direction u
forming the dampnu matrix. Every value in this matrix is
optimized dynamically before the first and after every 50th
iteration. The improved damping reads

anew� =
anew + aoldDampnu

1 + Dampnu
, 0 � dampnu � � , �13�

where anew calculated by Eq. �12� is substituted by anew� tak-
ing into account the matrix from previous iteration, aold, and
the appropriate damping dampnu. Considering the low-
temperature range even improved damping fails to start the
iteration process. In this case the solutions obtained at a
higher temperature are used as initial values of a in Eq. �12�
and then the temperature is gradually decreased by factor
0.85.

To obtain the magnetic-field distribution from a known
vector potential distribution, the field h�r�=��A�r� is cal-
culated simultaneously for all r in the mesh using FFT.
While transforming the real vector A=Axex+Ayey to a com-
plex number A=Ax+ iAy, we use the equation

FFT−1��qx − iqy�FFT�Ax + iAy�� = �� � A� · ez − i � · A ,

�14�

where FFT and FFT−1 denote direct and reverse two-
dimensional fast Fourier transforms and qx and qy
are the coordinates of the corresponding wave vector
qij =qx�i�ex+qy�j�ey over all matrix cells.

After solving the Eilenberger equations the obtained
magnetic-field distribution hE�r� is fitted with the London
field distribution hL�r� finding the fitting parameter �h. The
normalized difference between these fields corresponding to
B=1, T=0.5, and �=1 is shown in Fig. 1. The accuracy of
the fitting exceeds 1%. Figure 2 shows the calculated �h�B ,��
surface at T=0.5. The main effect on �h arises from impurity
scattering resulting in strong suppression of the vortex core
size when � decreases. Growing of �h with T has been found
previously7 but with different shapes. These dependencies
have different physical meanings: increasing of �h��� is con-
nected with approaching the clean limit, while growing of
�h�T� is explained by divergency of the coherence length
near Tc.

Figure 3 demonstrates the calculated field dependence of
�h in pure and dirty superconductors with different relaxation
times � and temperatures, �a� T=0.2 and �b� T=0.5. It is
found that the shape of �h�B� depends strongly on tempera-
ture. At moderate temperatures �e.g., T=0.5� there is a mini-
mum in �h�B�. A minimum was found also in the order-
parameter coherence length �� �Ref. 6� ��1 in notation of Ref.
1� reflecting interconnection between the magnetic coher-
ence length �h�B� and the order-parameter distribution. Nu-
merical calculations of ���B� show that embedding impuri-
ties results in suppression of the minimum in �h and
eventually leads to a monotonically decreasing function.6 At
low temperatures like T=0.2 the values of �h�B� monoto-
nously increase when B is increased. At all temperatures,
increasing of the scattering rate results in decreasing of �h
making the �h�B� curve more flat. As can be seen from Fig. 3
at ��0.5 the magnetic-field dependence of �h practically dis-

appears. Suppression of �h with increasing scattering rate is
so strong that it excludes any possibilities of crossing the
�h�B� curves at different �. This behavior is different from
the ���B� curves obtained in Ref. 6 where crossing of these
curves is clearly visible. Absence of the crossing was also
found in linearized approximation of the Eilenberger
equation.2 It probably reflects the importance of the length
scale �2 in calculation of �h.

Minimum in �h�B� dependence was also found for clean
d-wave superconductors.17 Presence of nonmagnetic impuri-
ties could change the �h�B� dependence in d-wave supercon-
ductors because there are pair breakers decreasing the critical
temperature.18 As a result, nonzero density of state appears at

FIG. 1. �Color online� Normalized differences between the
fields hL and hE calculated with the generalized London model and
with the Eilenberger equation, respectively, for B=1, T=0.5, and
�=1. The scales of the lengths are those of the flux-line lattice unit
vectors.

FIG. 2. �Color online� Three-dimensional plot of �h�B ,�� at
T=0.5.
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small concentration of impurities even in the Meissner state.
It could make the �h�B� dependence much more flat in com-
parison to clean d-wave superconductors similar to s-wave
superconductors with strong scattering �see Fig. 3�.

Figure 4 illustrates the behavior of �h��� in a wide range
of � up to moderate scattering where � is comparable with
characteristic time �0 �to be defined below� at B=5 and
T=0.2, 0.5, and 0.8. At small � a sharp increase in �h��� with
increasing � is evident. It resembles the prediction for �el in
dirty superconductors with uniform order parameter, where
���.11 In the clean limit we have ��1 and asymptotically
�h���−�h����1 /�. The value of �h�5� is near the limit for
clean superconductors �h���, shown in Fig. 4 by the dotted
lines.

Our numerical approach extends the theory of electro-
magnetic coherence length in the Meissner state11 to the

mixed state. In our case the shape of the �h�� ,T� dependence
shows some differences which can be attributed to different
definitions of the coherence length �h in our model and �el.

11

The electromagnetic length �el is defined by the relation19

lim
q→�

qK�q,T�/K�0,T� = 3�/4�el, �15�

where K�q ,T� can be calculated in terms of single-particle
Green’s functions. It governs the connection between the
current and the vector potential in the Meissner state,

j�q,T� = −
c

4�
K�q,T�A�q� . �16�

In framework of the Bardeen-Cooper-Schrieffer �BCS�
theory we have

�el/�BCS =
��

2 �
n�0

1

�̃n�1 + un
2�3/2

/�
n�0

1

1 + un
2 . �17�

Figure 5 shows the ratio �h /�el at �a� B=1 and �b� B=4 at
different relaxation times �=0.2, 0.5, 1.5, and 5.0. While
uniform superconductors are considered in the calculation of
�el, in our case �h is calculated assuming a space-dependent
self-consistent pairing potential in the vortex core. In the
mixed state the Kramer-Pesch effect5 is important at low
temperatures resulting in difference of �Ref. 7� from �el�T�.11

Intervortex interaction in the mixed state results in field de-
pendence of �h which is absent in �el. As can be seen from
Fig. 5 the �h /�el�F ratio is weakly dependent on relaxation
time illustrating that both �h and �el have a similar depen-
dence on �. This demonstrates that characteristic relaxation
times by impurities are similar in the Meissner and in the

FIG. 3. �Color online� The calculated field dependence of �h at
different relaxation times � and temperatures, �a� T=0.2 and �b�
T=0.5.

FIG. 4. �Color online� The dependence of �h on impurity scat-
tering at B=5 and T=0.2, 0.5, and 0.8. The solid lines represent
fitting according to Eq. �18�; the dotted lines denote the pure limit
��=��.

FIG. 5. �Color online� Temperature dependence of F��h /�el

ratio at �a� B=1 and �b� B=4. From top to bottom the relaxation
times � are 0.2, 0.5, 1.5, and 5.0 in both plots.
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mixed state only with slight renormalization by the magnetic
field in the last case. The main effect of nonuniformity of the
order parameter is described by temperature dependence of
�pure. It means that the �h�B ,T ,�� dependence can be ap-
proximately attributed to two contributions: one is connected
with core effects described by the F�T� function �see Fig. 5�
and the other is responsible for impurity scattering character-
ized by �el���.

For comparison with experiments an analytical relation is
needed. This approach was successfully used for description
of the electromagnetic coherence length in the Meissner
state.11 To describe the mixed state we fit �h��� in the con-
sidered range of impurity concentration by the function

�h�B,T,�� =
�pure�B,T�

1 +
�0�B,T�

�

, �18�

where �pure�B ,T� is the effective coherence length in clean
superconductors.7 The chosen �h��� interpolation formula
�Eq. �18�� has the same behavior as �el in the limits of
�→0 �h�� and at �→� �h→�pure. The characteristic relax-
ation time �0�B ,T� is given at temperatures T=0.2, 0.5, 0.8,
and B=5 in Table I. As can be seen from Fig. 4, one-
parameter fitting represents excellently the numerically cal-
culated impurity dependence of �h��� which has a similar
shape as in the Meissner state19 but with different tempera-
ture dependences of the fitting coefficients; in the Meissner
state all parameters are decreasing functions of temperature
but in our case �0�T� is a decreasing and �pure�T� an increas-
ing function, resulting from core effects. Figure 6 demon-
strates the �0�B ,T� surface where decreasing of �0 with tem-
perature holds out in a wide magnetic-field range. As can be
seen from Fig. 5 the function F depends mainly on tempera-
ture. This means that characteristic relaxation time is similar
in the Meissner and in the mixed states.

The model has been introduced to describe local proper-
ties of FLL.7 Taking into account the nonlocal properties of
FLL, an anisotropic nonlocal Lij tensor can be used instead
of London penetration depth.20 This method is useful for
description of the transition from triangular to square vortex
lattice observed by SANS technique in high-Tc
superconductors21 and for explanation of the effects related
to the fourfold anisotropy in field distribution in high-Tc
superconductors.20,22 The theory has been successfully ap-
plied also for interpretation of the results of �SR
investigations.23 Microscopic theory based on quasiclassical
theory describing these effects has been developed,17,24 and it
was found that the nonlocal generalized London equation16

model can be used as a reasonable approximation of the qua-
siclassical approach. A good test of the applicability of the

model is calculation of the field distribution anisotropy of the
single vortex in d-wave superconductors; the model predicts
the sign changes in H�r ,�=0�−H�r ,�=� /4� at some radius
at low temperature, in agreement with the Eilenberger
equations.25 However a magnetic-field-dependent cutoff pa-
rameter is still needed for detailed description of the field
distribution. The anisotropy of FLL is often unimportant for
explanation of the magnetization data and transport
measurements.2 Thus, the more simple local model7 can be
used. It should be also noted that the shapes of the �h /�0

dependences on B are similar in the local and nonlocal
models.7,24 Using a field-dependent effective penetration
depth, ��B�, �SR measurements give information about an-
isotropy of the superconducting order parameter by measur-
ing the slope of � against magnetic field.26 This method also
requires an a priori defined cutoff parameter which cannot
be determined directly from other experiments. It has been
experimentally established for a variety of materials, which
the value of �ab when H→0 agrees with the magnetic pen-
etration depth measured by other techniques in the Meissner
phase. Consequently, only �ab�H→0� can be considered as
true measure of the superconducting electron density.27

To conclude, magnetic field, relaxation time, and tempera-
ture dependences of the effective coherence length in the
mixed state are obtained by solving Eilenberger equations.
This length determines the form factor of FLL. The mini-
mum in the �h�B� dependence is found in superconductors at
moderate temperatures. It will be interesting to check this
prediction experimentally by SANS measurements. At low
temperatures the value of �h�B� monotonously increases and
the shape of the �h�B� curve is flattened along with decreas-
ing scattering time � �Fig. 3�. In wide range of impurity
concentrations the calculated results can be well expressed
with a one-parameter fitting function.

This work was supported by the Wihuri Foundation, Fin-
land.

TABLE I. The parameters �pure and �0 used for fitting Eq. �18� at
B=5 and T=0.2, 0.5, and 0.8.

T /Tc 0.2 0.5 0.8

�pure /�BCS 0.525 0.845 1.167

�0�2kBTc /�� 0.379 0.294 0.264

FIG. 6. �Color online� Three-dimensional plot of characteristic
relaxation time �0�B ,T�.
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